If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3+2x^2-5=0
We add all the numbers together, and all the variables
2x^2-2=0
a = 2; b = 0; c = -2;
Δ = b2-4ac
Δ = 02-4·2·(-2)
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4}{2*2}=\frac{-4}{4} =-1 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4}{2*2}=\frac{4}{4} =1 $
| 9-10x^2+1=0 | | 4((2y+7)/3)+5y=-6 | | 4(2y+7)+5y=-6 | | 4(2y+7)=-6 | | 4(2y/3+7/3)=0 | | 2^0+2^(x-2)+2^(x+1)+2^x=53 | | 2x-3/4=1/2x+5/6 | | 10(4-2x)=100 | | 2x-3/4=1/2x=5/6 | | x–7=43 | | 4x+12=-40-9x= | | (2x+1)+(2x+5)+(23+5)+(2x+7)=96 | | 10(x+4)=-10 | | 17x+8+110+74+66=360 | | 3(8-2x)=30 | | 4*(2y/3+7/3)+5y=-6 | | (6/2x-1)-(-3/x+1)=1 | | X^+8x-64=0 | | 320-4x+3x+2x=360 | | 2x+(2x+2)=66 | | X3+3x2-9x-1=0 | | X3+3x^2-9x-1=0 | | X^3+3x^2-9x-1=0 | | 4y-3=6y-11 | | 320-4x-3x-2x=360 | | X³+3x²+9x=1 | | 3g=-2 | | M=-5,b=1 | | 7x=15-30^2 | | 3u+2+2-2u=1u+5 | | 2y^2=23 | | 9/25/x=3/7/15/14 |